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ABSTRACT
Purpose Oral bioavailability (%F) is a key factor that determines
the fate of a new drug in clinical trials. Traditionally, %F is measured
using costly and time-consuming experimental tests. Developing
computational models to evaluate the%Fof new drugs before they
are synthesized would be beneficial in the drug discovery process.
Methods We employed Combinatorial Quantitative Structure-
Activity Relationship approach to develop several computational
%F models. We compiled a %F dataset of 995 drugs from public
sources. After generating chemical descriptors for each com-
pound, we used random forest, support vector machine, k
nearest neighbor, and CASE Ultra to develop the relevant QSAR
models. The resulting models were validated using five-fold cross-
validation.
Results The external predictivity of %F values was poor
(R2=0.28, n=995, MAE=24), but was improved (R2=
0.40, n=362, MAE=21) by filtering unreliable predictions
that had a high probability of interacting with MDR1 and
MRP2 transporters. Furthermore, classifying the compounds
according to the %F values (%F<50% as “low”, %F≥50%
as ‘high”) and developing category QSAR models resulted in an
external accuracy of 76%.
Conclusions In this study, we developed predictive %F QSAR
models that could be used to evaluate new drug compounds, and
integrating drug-transporter interactions data greatly benefits the
resulting models.

KEY WORDS drugs . intestinal membrane transporter . oral
bioavailability . QSAR

ABBREVIATIONS
%F Oral bioavailability
AD Applicability domain
ANOVA Analysis of variance
CCR Correct classification rate

(balanced accuracy)
CNT Continuous activity scale
Combi-QSAR Combinatorial quantitative

structure-activity relationship
CPT Consensus prediction threshold
CTG Category activity scale
CYP Cytochrome P450
D Dragon descriptors
HIT Human intestinal transporter
kNN k nearest neighbor
MAE Mean absolute error
MDR1 Multidrug resistance protein 1

(P-gp, ABCB1)
MOE Molecular Operating Environment
MPOI Mean probability of interaction
MRP2 Multidrug resistance-associated

protein 2 (ABCC2)
POI Probability of interaction
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QSAR Quantitative structure-activity
relationship

R2 Coefficient of determination
RF Random forest
SVM Support vector machine

INTRODUCTION

Drug oral bioavailability is the fractional extent of the drug
dosage that finally reaches the therapeutic site of action and is
quantitatively symbolized as %F (1). In many cases, most of
the orally administered drug is metabolized and eliminated
before reaching systemic blood circulation (1). Therefore,
poor bioavailability may cause a new drug to fail clinical trials,
even if it has high efficacy in previous in vitro and/or in vivo

tests. The traditional process for measuring the%F of a drug is
expensive, costly, and time-consuming. Using computational
methods as an alternative to calculating the %F of new drug
candidates, even before synthesizing the compound, would be
advantageous by saving resources and provides a promising
alternative to traditional experimental protocols.

To date there are many computational oral bioavailability
models that are available (2–11). Some are based on Quantita-
tive Structure-Activity Relationship (QSAR) models that predict
the oral bioavailability of new compounds directly from the
molecular structure. Table I lists several major QSAR studies
on oral bioavailability. In 2000, Andrews et al . developed a
computational oral bioavailability model using linear regression.
This model was able to predict highly bioavailable compounds
accurately, but had poor performance for low bioavailable com-
pounds (2). Moda et al . developed hologram QSAR oral bio-
availabilitymodels that predicted%F using fragment descriptors.
However, poorly soluble and non-oral bioavailable drugs were
excluded intentionally from the modeling set (3). Ma et al . used a
Combinatorial QSAR (Combi-QSAR) approach to develop an
oral bioavailability classification model. Although the unbal-
anced accuracy for a five-fold cross-validation of their modeling
set was 80%, the specificity (correct predictive rate for inactive
compounds) was only 20% due to the high imbalance between

actives and inactives (4). More recently, Tian et al . attempted to
create multiple linear regression human oral bioavailability
models by combining molecular properties and structural finger-
prints with genetic function approximation. The predictivity of
the reported model was acceptable (R2

ext=0.50), but the struc-
tural fingerprints used to generate the training set does not apply
to all drug classes. This limits the applicability of the model for
predicting new classes of compounds (5).

In addition to the QSAR models mentioned above, previ-
ous research suggests that the rule-based models, such as the
rule-of-five (6), are not sufficient enough for evaluating the
oral bioavailability of drugs (7–9). Nevertheless such empirical
rules are useful for qualitative assessment and we list in Sup-
plemental Table I several rules previously developed for
assessing drug oral bioavailability and absorption. In 2002,
Veber et al . studied themolecular properties and in vivo/in vitro
pharmacokinetic parameters that affect oral bioavailability (7).
The authors concluded that the molecular properties of the
drug, target receptor, cell membrane, and transporter pro-
teins should all be studied during drug development. Ignoring
one factor can result in poor bioavailability (7). More recently,
property-based rules for bioavailability (5) and parameters
needed for optimal oral bioavailability classification (10) were
evaluated. There are certain physical properties that contrib-
ute to oral bioavailability, but these parameters are better at
predicting intestinal absorption (5,7,10). Recently, Paixão
used in vitro test results as parameters to develop an oral
bioavailability model (11). Incorporating in vitro data helped
improve the prediction accuracy of the resulting models.

In this study, we developed several novel models of human
oral bioavailability of pharmaceutical drugs. After compiling
over one thousand drugs and their experimental %F values,
we corrected the data entry errors using both automatic tools
and manual curation steps. We utilized the Combi-QSAR
approach to develop several computational oral bioavailabil-
ity models. A series of individual category (CTG) and contin-
uous (CNT)models were developed and validated using a five-
fold cross-validation. To improve the predictivity of the resulting
QSAR models, we tried to integrate Human Intestinal Trans-
porter (HIT) interactions into the final predictions. This hybrid
approach was able to exclude compounds with considerable

Table I Brief Description of Previous QSAR Oral Bioavailability Models

Source Description Performance Train/test set sizes

3 Hologram QSAR, CNT, modeling %F q2=0.35–0.70/Rext
2=0.85 250/52

(mostly highly bioavailable drugs)

5 Combinatorial QSAR, CNT, modeling %F R2ext=0.50 (after removing outliers) 916/80(?)

2 Stepwise Regression; CNT: modeling %F R2ext=0.58 473/118

4 Combinatorial QSAR, CTG, modeling: positive
(%F≥20), negative (%F<20)

CCRTrain (5-fold CV) = 62%/
CCRTest=59–71%

690/76
(mostly highly bioavailable drugs)

q2 - Cross validated correlation coefficient; R2 - Coefficient of determination
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prediction errors from the final predictions. Our predictive
Combi-QSAR oral bioavailability models can be used to assess
and evaluate new drug candidates. Furthermore, similar ap-
proaches could be developed and utilized to model other com-
plex biological activities for drug and drug like molecules.

METHODS

Human Oral Bioavailability Dataset

The human oral bioavailability dataset was compiled from
various public and private sources (3,5,8,12–17). Originally it
contained over 1,300 entries. Several tools (CASEUltra, Chem
Axon Standardizer, Chem Axon Structure Checker) were used
for chemical structure curation and standardization. For dupli-
cate entries, one was removed. For stereoisomers, the structure
of the compound with the highest activity was kept. For salts,
the chemical structure was neutralized. Mixtures were separat-
ed and the largest component was kept. All metals,
metaloorganics, and inorganic entries were removed.

We also carefully evaluated the experimental %F values in
our dataset. It was common to find different %F values for the
same compound among different sources. We selected the %F
values reported in, Goodman & Gilman ’s The Pharmacological Basis
of Therapeutics , over the %F values reported from other sources,
because the bioavailability data in this book was curated and
harmonized by experienced medicinal chemists (12). In other
cases, the values were harmonized if the range of the%F values
were less than 10 for the same compound. If the %F value for
the salt and neutral forms were different, the %F value for the
neutral form was kept. For compounds with disparate %F
values, the experimental studies that reported the values were
carefully evaluated. After comparing sources, the %F from the
study that clearly defined the method for determining the %F
value was selected. A total of 995 unique compounds remained
for the following modeling process after the curation.

After harmonizing the %F values, the compounds were
classified as low bioavailable (%F<50, n=455) and high
bioavailable (%F≥50, n=540). There is no universal crite-
rion to define high and/or low bioavailable compounds.
We used %F=50% as an arbitrary classification threshold
in this study since it could also balance the ratio of two
classifications in the dataset. Non-oral drugs (%F=0), e.g.
compounds commonly administered by intramuscular or
intravenous injection, were included in the low bioavailable
group. Also, using sigmoid function, we transformed the
%F values to logK(%F), a pseudo-equilibrium constant, as
it has more balanced distribution of values and could afford
improved models.

logK %Fð Þ ¼ log
%F

100−%F

� �
ð1Þ

The distribution of all 995 compounds based on the %F
values is displayed in Fig. 1. Supplementary Material Table II
lists all 995 compounds, the oral bioavailability values, and the
corresponding references.

Chemical Descriptors

Chemical descriptors for each compound were generated using
2-D chemical descriptors from Dragon ver. 6.0 (Talete SRL,
Milano, Italy) and Molecular Operating Environment (MOE)
ver. 2011.10. Dragon descriptors included constitutional indices,
ring descriptors, topological indices, walk and path counts, con-
nectivity indices, matrix-based descriptors, autocorrelations, Bur-
den eigenvalues, edge adjacency indices, functional group counts,
atom-centered fragments, atom-type, E-state indices, atom pairs,
molecular properties, and drug-like indices. MOE descriptors
included physical properties, structural keys, E-state indices, to-
pological polar surface area, and topological indices. Initially, the
Dragon and MOE software generated 3,753 and 186 descrip-
tors, respectively. Since many Dragon descriptors in this dataset
were redundant, the number of Dragon descriptors was reduced
by removing low variance (standard deviation <0.01 or missing
values) and highly correlated (r >0.95) descriptors. The
remaining 1,597 Dragon and 186 MOE descriptors were
range-scaled to [0,1] and used in the modeling process except
for CASE Ultra, which has its own built-in fragment descriptors.

Modeling Approaches

In this study, the implementation of the Random Forest (RF)
(18) and Support Vector Machine (SVM) (19–22) algorithms
available in R.2.15.1 (23) were used. The k Nearest Neighbor
(kNN) models (24) were buil t using Chembench
(chembench.mml.unc.edu).

CASE Ultra

CASE Ultra is a QSAR expert system and can automatically
generate a predictive model from a training set of non-
congeneric compounds with associated biological activity da-
ta. The training set usually contains examples of both active
and inactive chemicals and the algorithm identifies positive
and deactivating alerts (structural fragments statistically relat-
ed to activity and inactivity) after processing them. These
alerts form a CASE Ultra model that can be used to predict
activity of a test chemical (25,26).

Combinatorial QSAR Modeling Workflow

The entire Combinatorial QSAR modeling workflow is shown
in Fig. 2. Individual models were developed using Dragon (de-
noted by the prefix “D”) or MOE descriptors and either RF,
SVM, or kNN modeling methods. CASE Ultra was used to
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develop a single CTG model. This resulted in seven different
CTG, four different CNT-%F, and four different CNT-
logK(%F) models. The individual CTG models were D-RF,
D-SVM, D-kNN, MOE-RF, MOE-SVM, MOE-kNN, and
CASE Ultra. The individual CNT-%F and CNT-logK(%F)
models were D-RF, D-SVM, MOE-RF, and MOE-SVM.
The results for each CTG model and CNT model were aver-
aged to generate the corresponding consensus CTG, CNT-%F,
and CNT-logK(%F) predictions, which will be further referred
to as consensus models (Fig. 2).

All models were validated using five-fold external cross-
validation. Briefly, the oral bioavailability dataset was ran-
domly divided into five equal subsets. One subset was used
as the validation set (20%) and the other four subsets (80%)
were used as the training set. The training set was used to
develop the models and the models were validated by the left-
out validation set. The procedure was repeated five times so
that each compound was in a validation set. Additional details
about the modeling approaches can be found elsewhere
(27,28).

Universal Statistical Figures of Merit for All Models

Since various modeling approaches and different descriptors
were used in the modeling process, universal statistical metrics
were needed to evaluate the performance of the models de-
veloped individually. The results were harmonized by 1) using
sensitivity (percentage of high oral bioavailable drugs predict-
ed correctly), specificity (percentage of low oral bioavailable
drugs predicted correctly), and CCR (correct classification
rate or balanced accuracy) for CTG models; and 2) Pearson’s
multiple linear correlation coefficient (R2) and mean absolute
error (MAE) for CNT models. These parameters are defined
as followed:

% sensitivity ¼ true positives

true positives þ false negatives

� �
�100 ð2Þ

% specificity ¼ true negatives

true negatives þ false positives

� �
�100 ð3Þ

% CCR ¼ sensitivityþ specificity

2

� �
�100 ð4Þ

R2 ¼ regression sum of squares

total sum of squares
ð5Þ

MAE ¼ 1
n

Xn

i
predicted valuei−true valueij j ð6Þ

IntegratingHuman Intestinal Transporters Interactions
of Compounds Into Oral Bioavailability Predictions

We recently reported a QSAR study for predicting inter-
actions for different HITs (29). These HIT models were
used to generate the transporter interaction scores for the
drugs in our oral bioavailability dataset. Interactions be-
tween molecules and HITs depend on the size, shape,
charge, and the chemical properties of the molecule (30).
Most of the compounds in our dataset have aromatic rings,
bulky groups, and are ionizable. Compounds with these
features are commonly removed from the enterocytes by
the efflux transporters Multidrug Resistance Protein 1
(MDR1) and Multidrug Resistance-Associated Protein 2
(MRP2), which could decrease their oral bioavailability
(30). Therefore, we used the interaction parameters of
MDR1 and MRP2 to filter predictions of compounds from
our models.

Fig. 1 Distribution of compounds
by various %F ranges.
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RESULTS

Overview of Dataset

We did a comprehensive analysis on the chemical structures
and relevant bioavailability data from the public databases
used in this study. This comparison revealed that only 80% of
the entries in current oral bioavailability databases are accu-
rate. There were discrepancies between reports from different
sources, affecting both molecular structures and %F values.
For some compounds, the substituent groups were placed at
incorrect positions. Supplementary Material Table III lists
several examples of incorrect chemical structures that were
identified from the original sources and corrected.

Furthermore, Buxton et al . indicated that it would be
normal for different sources to report different %F values for
the same compound (1). However, the compounds with dis-
parate %F values needed to be harmonized for modeling
purposes. Furthermore, we found that errors from the report-
ed %F values occurred when a source incorrectly used the
neutral names and salt forms of a molecule interchangeably.
All of the errors were carefully examined and corrected.

The structural similarities between the compounds in the
dataset can be analyzed by performing a principal component
analysis on the chemical descriptors. After generating the
principal components using the 186 MOE descriptors for all

of the compounds in the database, we selected the top three
most important components to create a three-dimensional
plot (Fig. 3) for all 995 compounds. These three principal
components capture around 50% of the variance in our
database. This plot could be viewed as the chemical structure
space covered by all the compounds in our oral bioavailability
dataset. More detailed plots of the chemical structure space
can be found in Supplementary Material Figures 1–3.
According to this analysis, there are about 10 structural out-
liers that are dissimilar to the majority of the compounds.
Most of these compounds represent non-bioavailable or low
bioavailable drugs, including antibiotics, neuronal drugs, and
intravenous drugs. Some previous studies showed that remov-
ing structural outliers before the modeling process was bene-
ficial to the results of the QSARmodels (3,5). In this study, we
kept these outliers since they are only a small portion (~0.1%)
of the whole dataset. Furthermore, removing the outliers did
not improve the resulting models (data not shown).

Category Models

We developed seven individual and one consensus model by
using two bioavailability categories (“low”, %F<50% and
“high”, %F≥50%; see Methods). The five-fold external
cross-validation results for all CTG models are shown in
Fig. 4. The sensitivity, specificity, and CCR for the individual

Fig. 2 Combinatorial QSAR
modeling workflow.
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models ranged from 59–72%, 61–70%, to 62–70%, respec-
tively. The D-SVMmodel had the lowest predictivity (CCR=
62%). The MOE-RF model had the highest specificity and
CCR of 70%. The MOE-kNN model had the highest sensi-
tivity of 72%. Compared to the best individual model, the
consensus model showed similar statistics, with sensitivity,
specificity, and CCR as 72%, 69%, and 70%, respectively.
Themodel obtained from our commercial modeling software,
CASE Ultra, had intermediate results with sensitivity, speci-
ficity, and CCR all as 65%.

Furthermore, we implemented Consensus Prediction
Thresholds (CPT), as mentioned in one of our previous studies
(31), to the prediction results by using different low bioavail-
able and high bioavailable thresholds. The prediction results
from each individual model had continuous scores that ranged
from 0 to 1. The 0.5 mark was initially used as the single
threshold to distinguish compounds predicted as low bioavail-
able (CPT<0.5) and high bioavailable (CPT≥0.5). Using
stricter thresholds, the compounds that were predicted around
0.5 should be considered as “inconclusive.”We removed these
inconclusive predictions by using different CPTs to define low
bioavailable and high bioavailable compounds. Two CPTs
were defined: 1) <0.4 as low bioavailable and >0.6 as high
bioavailable (CPT-1 scheme); 2) <0.3 as low bioavailable
and >0.7 as high bioavailable (CPT-2 scheme).

Implementing CPT-1 and CPT-2 schemes enhanced the
predictivity of the individual and consensus CTG models. For
the individual CTG models with CPT-1 and CPT-2, the sensi-
tivity, specificity, and CCR ranges were between 61–87%, 50–
82%, and 59–83%, respectively (results not shown here). In the
consensus CTGmodel, the sensitivity, specificity, andCCRwere
78%, 74%, 76%, respectively for CPT-1 and 82%, 77%, 79%,

respectively for CPT-2 (Fig. 5). As the tradeoff for excluding
compounds with inconclusive predictions, using CPT-1 and
CPT-2 decreased the consensus model coverage to 71% and
46%, respectively.

Continuous Models

We also developed four individual and one consensus model
for the CNT-%F and CNT-logK(%F) bioavailability datasets.
The results for both types of models are shown in Table II.
The statistics for the four individual CNT-%F models were
relatively poor (R2=0.13–0.30 and MAE=~24–53). Using
Applicability Domain (AD) to remove unreliable predictions
of structurally dissimilar compounds, as described previously

Fig. 3 Chemical space of human
%F database (n=955) using top 3
principal components of MOE
descriptors.

Fig. 4 Performance of CTG QSAR models using five-fold cross-validation.
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(24), did not give significant improvement to our models
(results not shown). We therefore did not use AD for the
analysis in this study. Compared to the individual models,
the consensus CNT-%F model was also close to the upper
boundary (R2=0.28 and MAE=~24). To verify the statistical
significance of all the models (in comparison to random
chance performance), a two-way ANOVA test with a confi-
dence level of 95% was performed for each model (32). The
obtained p values were lower than 0.05.

The statistics for the four individual CNT-logK(%F)
models were similar (R2=0.11–0.30 and MAE=~23–28).
The consensus CNT-logK(%F) model was also close to the
upper boundary (R2=0.25 and MAE=24). The obtained
p values were lower than 0.05. Nevertheless, the distribution
of errors was very different for the CNT-logK(%F) model
compared to %F scale (Fig. 6). Compounds with very low
and very high %F values were predicted more accurately by
the CNT-logK(%F) model.

Integrating Human Intestinal Transporter Parameters
into the CNT-%F Bioavailability Model

HITs are an important factor in intestinal absorption, which
greatly affects oral bioavailability and other pharmacokinetic
properties of their substrate (33). Figure 7 depicts the trans-
portation of drugmolecules byMDR1,MRP2, and by passive
diffusion in an enterocyte. It is known that both MDR1 and
MRP2 are responsible for the active efflux of drug molecules
from the enterocyte to the lumen (30). For this reason, a drug
with low passive diffusion, but high substrate affinity toMDR1
and/or MRP2 is not likely to be highly bioavailable. We have
also considered Breast Cancer Resistant Protein, another
major efflux transporter, but its imputed interactions did not
enhance our results (data not shown) and we excluded it from
further analysis. We used four MDR1 and MRP2 model
prediction results (29) to calculate the probability of interac-
tion (POI) for the compounds in our dataset. Then, the mean

probability of interaction (MPOI) for MDR1-s, MDR1-i,
MRP2-s, and MRP2-i for drugs in various bioavailability
ranges were calculated (Fig. 8), where s and i represent
substrates and inhibitors, respectively.

We established a rule that the drugs with a POI value
greater than the MPOI value of orally non-bioavailable drugs
in each transporter model should not have a predicted %F
value greater than 10. Table III lists examples of drugs, with
large %F prediction errors, and their HIT classifications. To
simplify the discussion, the HIT predictions for each com-
pound were classified as 0 (POI<MPOI) or 1 (POI>MPOI)
using the rule we created. For example, all the HIT predic-
tions and the predicted %F for Tirofiban were 1 and 54%,
respectively. Therefore, Tirofiban was considered an outlier
and was subsequently removed from the final model. On the
other hand, Procaine had a high prediction error and could
not be removed, because all the HIT predictions were classi-
fied as 0. In this case, the low bioavailability of this drug may
be due to other HITs, metabolism, or other reasons. Table III
lists examples of compounds with high prediction errors that
were successfully removed (No. 1–3), and missed (No. 4–6) by
our rule. The predictivity of compounds, that are substrates of
the two transporters, could not be improved by this rule.
These type of compounds with large prediction errors (e.g.
compounds 4 and 5) may be due to other factors, such as
metabolic stability. For example, Procaine (%F=0, Pred.
%F=66) was predicted as a false positive and is metabolized
by an esterase in the liver (34). The bioavailability model will be
expected to be further improved by integrating metabolism-
related parameters, such as Cytochrome P450 (CYP) interac-
tions. The compound Lymecycline (%F=99, Pred. %F=3), in
Table III is a specific case. It was predicted to be the substrate of
the two transporters, but it is actually a high bioavailable drug.
Lymecycline is water-soluble at physiological pH and is readily
absorbed through the gastrointestinal tract (35).

By using the HIT interaction rule described above to
remove unreliable predictions, we were able to improve the

Fig. 5 Predictivity of consensus
CTG model with different
consensus prediction thresholds
(CPT).

1008 Kim et al.



prediction accuracy of the current CNT-%F models, espe-
cially the consensus model. We did not incorporate HIT
interactions into the CNT-logK(%F) models. Since the over-
all results for the two types of models were similar, doing so
would have been redundant. The results for integrating
various HIT parameters into the consensus CNT-%Fmodel
are listed in Table IV. It is noticeable that the use of four
HIT parameters affects the predictions differently. Howev-
er, the best results were obtained from combining all four
transporter parameters. The R2 coefficient enhanced from
0.28 to 0.40 and the MAE reduced from 24 to 21. Subse-
quently, using HIT parameters reduced the prediction cov-
erage to 30%. A two-way ANOVA (α=95%) (32) and
Bootstrap Non-Parametric Permutation (N=10,000; α=
95%) (36,37) analysis revealed that the observed improve-
ments are statistically significant.We therefore conclude that
integrating HIT information with the oral bioavailability
models was a valid approach. We noticed that the relation-
ship between %F and drug interactions with MDR1 and/or
MRP2 is non-monotonic. Some HIT combinations were
better than others and incremental improvements were not
always achieved when integrating another HIT parameter.
This is understandable as there is overlap in substrate spec-
ificity between different efflux transporters (29).

DISCUSSION

Although the results for the CNT-%F and CNT-logK(%F)
models are relatively low, each model has their advantages.
We determined theMAE for the various%F ranges for both
of the models (Fig. 6). For predicting compounds with ex-
treme %F values (%F≤20% and %F≥90%), the CNT-
logK(%F) models performed better. For the mid %F ranges
(%F=20–90%), the CNT-%Fmodel yielded more accurate
results. Both types of models can be used to predict oral
bioavailability. Using the CNT-logK(%F) model can be
advantageous if higher accuracy is needed for very low or
very high bioavailability ranges. However, combining the
results of the CNT-%F and CNT-logK(%F) models did not
result in better statistics (data not shown).

Interpretation of QSAR models

There are many factors that affect oral bioavailability. Some
examples are intestinal absorption, water solubility, and
lipophilicity (1). These parameters can be modified to in-
crease or decrease oral bioavailability by slightly changing
certain chemical features on a compound. We evaluated
chemical structures potentially related to oral bioavailability
by analyzing Dragon descriptors. Dragon descriptors con-
tain more diverse structural descriptors compared to MOE,
so they more are practical for the model interpretations. WeTa
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calculated the average values of the most important structural
Dragon descriptors for both the 100 least bioavailable drugs
(%F=0–10) and 100 most bioavailable drugs (%F=90–99)
(Fig. 9). There were more descriptors related to low bioavail-
able drugs than high bioavailable drugs. For example, com-
pounds with high %F normally have aromatic groups (de-
scriptor ARR). Compounds with multiple aromatic rings like,
Anthracene and Naphthalene, can readily pass through bio-
logical membranes, which facilitate their absorption and

increase their bioavailability (38). Compared to aromatic
rings, drugs with aliphatic carbon chains (descriptors nCsp3
and C-009) were likely to have lower %F since these kinds of
drugs are poorly soluble in water, which greatly lowers their
bioavailability (39). An example of this type of drug is
Docosanol (%F=0%). There are several descriptors that refer
to the Lipinski rule of five (6). According to the Lipinski rule of
five, the existence of over five hydrogen bond donors and/or
acceptors may cause the decrease of the drug bioavailability
(6). The descriptor nO refers to the number of oxygen atoms
(oxygen is a potential hydrogen bond acceptor), and the
descriptor nHDon refers to the number of hydrogen donor
groups. Our modeling results support this hypothesis since
there are greater descriptor values for low bioavailable drugs
than high bioavailable drugs. On the other hand, the presence
of aromatic halogens (descriptor nARX) was prevalent in
highly bioavailable drugs. It was reported that the existence
of an appropriate number of aromatic halogens can enhance
the lipophilicity and aqueous solubility of a drug, two proper-
ties critical for absorption and bioavailability (40). Descriptors
nArNR2 and N-071 represent tertiary aromatic amines and
aromatic amines, respectively. Drugs with aromatic amines
can be readily absorbed through the gastrointestinal tract
(41,42). Beta-Lactams (descriptor nBeta-Lactams) tend to
have low %F due to their low lipophilicity which makes it
difficult to passively diffuse across the intestinal membrane.
Beta-lactams that have high %F are typically transported by
intestinal influx transporters like Peptide Transporter 1 (43),
which increases %F.

Some features, which are considered to be important for
bioavailability, represent complex mechanisms. For exam-
ple, N-alkylation (refer to the descriptor nN+) is a common
procedure used to increase the aqueous solubility of drug
molecules which have low bioavailability, such as
Bupivacaine (%F=0%) (44). However, this also reduced

Fig. 6 Distribution of prediction
errors (as MAE) relative to
experimental %F. Red and blue bars
represent consensus CNT-%F and
CNT-logK(%F) models
respectively.

Fig. 7 Drug efflux by intestinal transporters MDR1 and MRP2 in an
enterocyte; (a ) drug passively diffusing through the intestinal membrane; (b )
drug and metabolite transported out of the enterocyte.
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lipophilicity and the net effect on the oral bioavailability is
hard to measure. In our dataset this descriptor was consid-
ered to be relevant to low bioavailability since this feature

was found mostly in low bioavailable compounds. The
arylsulfonamide moiety (represented by the descriptor
nSO2N) was associated with high oral bioavailability. A

Fig. 8 Mean probability of
interaction (MPOI) for compounds
in specified %F ranges.

Table III Examples of Compounds with High Prediction Errors ThatWere Successfully (No. 1–3) or Not Successfully (No. 4–6) Removed After Combining the
Interaction Properties of MDR1-s, MDR1-i, MRP2-s, and MRP2-i

l

a Transporter score: 0 (POI<MPOI) and 1 (POI>MPOI)
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similar fragment descriptor was also identified by CASE
Ultra as the top biophore. There were 23 drugs in our
dataset that contained this structural feature and their
average %F was 77%. Examples of these drugs are shown
in Table V. Methods for improving the oral bioavailability
of sulfonamides have been studied for many decades. Pre-
vious studies found that the nitrogen atom of this fragment
(as shown in Table V) plays an important role in binding to
the receptor and is critical to membrane permeability and
bioavailability (45,46). However, the potential mechanisms
that are relevant to the bioavailability of sulfonamides are
still not well understood.

CYP enzymes have a crucial impact on the metabolic
stability of a drug (47). Some descriptors in Fig. 9, such as
the number of hydrogens (nH), hydrogens attached to sp3

carbon atoms (H-052), and number of sp3 carbon atoms
(nCsp3), were found to be correlated with low bioavailability.
It was reported that CYP enzymes hydroxylate the C-H bond
on sp3 carbon atoms (47). Thus, these three descriptors may
represent the structural features with low metabolic stability.
Interestingly, halogenated hydrocarbons are also susceptible
to oxidative dehalogenation by CYP enzymes (47). However,
our descriptor analysis shows that aromatic halogens are
related to high bioavailability (likely via enhancing membrane

Table IV Performance of Consensus CTN-%F Model With and Without Integrating HIT POI

Models Consensus Combinations of consensus with HIT POI

MDR1-s MRP2-s MRP2-s
& MRP2-i

MRP2-i
& MDR1-s

MDR1-s,
MDR1-i,
MRP2-s,
& MRP2-i

R 0.28 0.31 0.26 0.36 0.40 0.40

n 995 558 758 450 362 304

Coverage 100% 56% 76% 45% 36% 30%

Error analysis Mean Absolute Error 24.05 22.97 23.83 21.54 21.61 21.00

Standard Deviation 16.05 16.35 16.38 15.71 16.13 16.11

Two-way ANOVA
test α=95%

Fsignificance (p-value) 6.53×10−71 3.42×10−48 2.74×10−57 6.67×10−45 6.66×10−41 6.55×10−35

FCalculated 373.65 259.48 259.50 248.83 232.89 197.85

Bootstrap, non-parametric
permutation N=10,000
α=95%

Spearman (p value) N/A 0.33 0.74 0.08 0.06 0.20

Pearson (p value) N/A 0.17 0.17 0.04 0.01 0.02

Fig. 9 Chemical structure analysis
for the 100 least and 100 most
bioavailable compounds.
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permeability). This relationship could be further explored in
the future.

CONCLUSION

In this study, we first compiled a database containing 995 unique
human oral bioavailable drugs. The diverse drugs in this data set
include molecules with both low and high bioavailability. We
harmonized the %F values and evaluated all chemical structures
to ensure that the data in our database is accurate.

The bioavailability database was used to develop both CTG
and CNT models by using various modeling approaches. The
consensus predictions show better performance than individual
models for both CTG and CNTmodels. Although the results of
CNT models are relatively poor, we were able to use HIT
parameters to improve the model prediction accuracy. Correctly
using HIT parameters based on the transport direction allowed
us to remove some compounds with high predictions errors.
Efflux transporters that transport drugs out of the enterocytes
can limit the oral bioavailability of their drug-substrates. In this

study we found that the two efflux transporters, MDR1 and
MRP2, were important for enhancing the oral bioavailability
predictions in our models.

All of the models developed in this study can be used
to evaluate the bioavailability of new drug candidates.
The analysis of the important descriptors in the
resulting models showed the relationships between sev-
eral types of chemical structures and drug oral bioavail-
ability. This type of knowledge could be useful for
designing new drug molecules with suitable oral bio-
availability. The use of HIT parameters was beneficial to the
model predictions. We have confirmed that HITs need to be a
component in future bioavailability models. Future directions of
in silico oral bioavailability modeling should also take into con-
sideration interactions with the CYP enzymes. Similar methods
could be developed and employed to model other complex
bioactivities of drugs and drug-like molecules.
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